New Developments in Ovarian Cancer

Daniela Matei, MD
Professor
Gynecology Oncology
Northwestern University Feinberg School of Medicine
Robert H Lurie Comprehensive Cancer Center
Outline

- Recent and ongoing developments in ovarian cancer
- PARP inhibitors
- Antiangiogenic drugs
- Immunotherapy
- Clinical trials--Are clinical trials for you?
The News

- **Dec 19, 2014**: The U.S. FDA granted accelerated approval to olaparib for women with recurrent OC associated with defective BRCA genes (>3 lines).

- **Dec 2014**: US FDA approved bevacizumab for recurrent platinum resistant OC in combination with chemotherapy.

- **Dec 19 2016**: US FDA approved rucaparib for women with recurrent ovarian cancer associated with defective BRCA genes (>2 lines).

- **December 2016**: FDA approved bevacizumab for recurrent platinum sensitive OC in combination with Ctx.

- **March 2017**: US FDA approves niraparib for recurrent OC after response to platinum.

- **August 2017**: US FDA approved olaparib for recurrent OC after response to platinum.

- More approvals are expected in 2017 and 2018.
The news

- **Moment of celebration!**—these approvals follow a long drought period (>20 years)
 - 1995: liposomal doxorubycin
 - 1996: topotecan
 - 2006: gemcitabine

- The new drug approvals follow **decades of basic science and clinical research**.

- **Long way forward!**
 - Bring these discoveries to upfront treatment of ovarian cancer!
 - Find a cure.
 - Find new pathways to target refractory, resistant tumors.
A change in the course of the disease—longer survival!

CTX1 vs. CTX2

Estimated Probability of OS

- **CTX**
 - Time (months): 13.2, 22.4

- **CTX + Targeted agent**
 - Time (months): 22.4
Is Personalized Treatment Achievable in Gynecologic Cancer?
Mutation driven therapy in ovarian cancer is challenging because tumors are heterogeneous.

Pathway targeting:

- Angiogenesis
- DNA repair
- Targeting of the immune system
Abnormal vascular structures form and nurture tumor growth.

Carmeliet and Jain, Nature, 2000
Strategies to target angiogenesis

- Anti-VEGF antibodies (e.g., bevacizumab)
- VEGF
- Soluble VEGF receptors (e.g., VEGF-TRAP)
- Anti-VEGFR antibodies (e.g., IMC-1121b)
- Small-molecule VEGFR inhibitors (e.g., vatalanib, sunitinib, ZD6474, AZD2171)

Endothelial cell

VEGFR-1

VEGFR-2

Survival

Proliferation

Migration

ANGIOGENESIS
Bevacizumab single agent in recurrent ovarian cancer GOG 170D

Progression-Free Survival
By Treatment Group

Log-Rank P < .0001

N=62
Response Rate: 21% (2CR, 11PR)
6 months PFS: 40.7%
Median response duration 10 months

Burger, JCO, 2007
Bevacizumab in combination with chemotherapy

Platinum-resistant OC
- ≤2 prior anticancer regimens
- No history of bowel obstruction/abdominal fistula, or clinical/radiological evidence of rectosigmoid involvement

Chemotherapy
- Treat to PD/toxicity
- Investigator’s choice (without BEV)

BEV 15 mg/kg q3w + chemotherapy
- Treat to PD/toxicity
- Optional BEV monotherapy

Eric Pujade-Lauraine, JCO, 2014 and 2015
Bevacizumab for ovarian cancer—survival improvement

Andres M. Poveda et al. JCO 2015;33:3836-3838
Bevacizumab in ovarian cancer take home message

- Active agent in recurrent ovarian cancer
- Works as a single agent and in combination with chemotherapy
- Induces responses and stabilizes disease
- Long remissions
- Controls ascites
- Toxicities: high blood pressure, protein spill in the urine, stroke, blood clots, and bowel perforation
DNA Repair—What is PARP?
PARP enzyme repairs single strand DNA breaks
PARP inhibition in BRCA deficient cells

BRCA intact

BRCA mutated

BRCA2-mutant cells treated with a PARP inhibitor undergo massive chromosomal crisis due to the defect in DNA repair mechanisms.

Banerjee, Nature Reviews Clinical Oncology, 2010
Olaparib was the first approved PARP inhibitor

Side effects include: fatigue, anemia, nausea

Recent conversion from capsules to tablets: easier to tolerate

Survival by BRCA mutated status

Highest benefit in patients with BRCA mutated tumors

Lederman, NEMJ, 2014
Lederman, Lancet Oncology 2016
Rucaparib in ovarian cancer

- Second PARP inhibitor to be approved in BRCA mutated tumors
- Best effects observed in BRCA mutated tumors, but benefit also noted in patients identified using a genetic test.
- Impressive response rates in tumor with BRCA mutations (80%)
Niraparib Maintenance Therapy in Platinum-Sensitive, Recurrent Ovarian Cancer

- Niraparib 300 mg po qd
- Placebo po qd
- Treatment until disease progression
- Platinum based therapy

- Third PARP inhibitor to be approved
- Side effects include low blood counts, fatigue
- Effects observed in BRCA mutated patients, but also in ALL patients

Mirza, NEJM, 2016
PARP inhibitors beyond BRCA mutations

Unexpected results show positive effects of niraparib in tumors without BRCA mutations; leading to its unrestricted FDA approval

Mirza, NEJM, 2016
Ongoing PARP inhibitors Clinical Trials

- **GOG3005**: Carboplatin + paclitaxel +/- veliparib after surgery (*No BRCA mutation selection*)—accrual completed

- **SOLO1**: Maintenance olaparib after first line carboplatin + paclitaxel (*Only BRCA 1, 2 mutations*)—accrual completed

- **NRG GY004**: Phase II/III randomized study of olaparib, olaparib + cediranib vs. standard of care chemotherapy for platinum sensitive recurrent ovarian cancer

- **NRG GY005**: Phase II/III randomized study of olaparib, olaparib + cediranib vs. standard of care chemotherapy for platinum resistant recurrent ovarian cancer

- **Other interesting combinations**: PARP inhibitors and immunotherapy
PARP inhibitors take home message

- New class of drugs very active in ovarian cancer
- Three inhibitors approved: olaparib, rucaparib and niraparib
- Slight differences in indication profiles (active treatment vs. maintenance treatment)
- Differences in toxicity profiles
- Highest activity in patients carrying BRCA mutations
- A new test may become available to identify patients who could respond to PARP inhibitors in the absence of a BRCA mutation.
- Research is ongoing
PARP inhibitors: Questions for the future

- Which PARP inhibitor to use?
- Which patients benefit from PARP inhibitors?
- Can PARP inhibitors be combined with other drugs?
- Can PARP inhibitors be used in the first line setting?
- How toxic are PARP inhibitors?
- Are there long term side effects?
- Do tumors become resistant to PARP inhibitors?
Immunotherapy:
How does the immune system work?
How does the immune system work?
Mechanism by which tumor cells evade the immune system
How to unblock anti-tumor immunity: **Anti-PD1**

Examples: Pembrolizumab approved for lung cancer, melanoma, renal cancer, Nivolumab
How to unblock anti-cancer immunity anti-PDL1

Examples: atezolizumab—approved for bladder cancer
PD-L1 expression by tumor infiltrating immune cells (IC)
PD-L1 expression by tumor cells (TC)
PD-L1 expression in the tumor microenvironment can inhibit anti-tumor T-cell activity
Immunotherapy in Ovarian Cancer

- **Avelumab**: anti PD-L1
 - Recurrent ovarian cancer
 - N=75
 - Response rate: 8 (10%)
 - Stable disease: 44%
 - Serious toxicity: 6

- **Pembrolizumab**: anti PD1
 - Recurrent ovarian cancer
 - N=26
 - Response Rate: 3 (11%)
 - Stable disease: 23%
 - Serious toxicity: 2

Modest activity: need to boost effects of immunotherapy by using novel combinations
Mutations in Cancer Cells Make Them Appear Different to the Immune System

High mutational rates may contribute to increased immunogenicity

Some GYN tumors are noted to have high mutation load

Hypothesis: Use of drugs that affect the genomic make up of tumors can elicit immune responses to enhance effects of immune therapy.

Trial: An open label phase II trial of guadecitabine and pembrolizumab in platinum resistant recurrent ovarian cancer:

Daniela Matei, PI
Hypothesis:
Combination chemotherapy and immunotherapy is more effective than chemotherapy alone for patients with advanced endometrial cancer.

Study design:
Standard chemotherapy + pembrolizumab in recurrent or advanced endometrial cancer

Objectives:
- To estimate the response rate
- To determine the toxicities
- To measure immune response in tumor samples

PI: Dr. Pineda/Matei
Immunotherapy - take home message

- New class of drugs very active in cancer
- Toxicity profiles includes immune effects (rash, arthritis, diarrhea)
- Efficacy in gynecologic tumors is modest at this time
- Patients who respond have long remissions
- Duration of treatment remains unclear
- Research ongoing to identify combinations that may boost the effects of immunotherapy in ovarian cancer and to define ways to find patients likely to benefit from immunotherapy.
Clinical trials are research studies that explore whether a medical strategy, treatment, or device is safe and effective for humans.

These studies also may show which medical approaches work best for certain illnesses or groups of people.

Clinical trials produce the best data available for health care decision-making.

The purpose of clinical trials is research, so the studies follow strict scientific standards. These standards protect patients and help produce reliable study results.
What are clinical trials?
Type of clinical trials

- Interventional clinical trials:
 - A new intervention is tested (new drug, new device, new test, new procedure).
 - There are risks and inconvenience associated with new interventions (side effects, doctor visits).
 - There are potential benefits (longer survival).
 - Informed Consent Form: risks/benefits
What are clinical trials?

- Interventional clinical trials types: Phase I

 Drug or device tested in humans for the first time

 Main goal: determine tolerable dose

 Toxicity and efficacy are NOT known

 Correct dose is not known: **dose escalation**

 High risk, benefit is unknown (response rates <10%)

 Intense monitoring: visits, blood draws

 All participants receive the drug: incremental doses

 Open eligibility, any cancer, any number of prior therapies
What are clinical trials?

- Interventional clinical trials types: Phase II
 - Dose and toxicity are known
 - Main goal: testing efficacy in specific disease
 - Risk is smaller, benefit higher
 - All participants receive the intervention
 - May require additional testing (biopsies, scans)
 - Restrictive eligibility: strict criteria for enrollment
What are clinical trials?

- **Interventional clinical trials types: Phase III:**
 - Dose, toxicity are known
 - Efficacy in specific disease is known (phase II)
 - **Definitive proof before approval by the FDA**
 - **Very restrictive eligibility criteria**

Randomized design:

\[\frac{1}{2} \text{ participants receive intervention; } \]

\[\frac{1}{2} \text{ participants receive control (approved treatment or intervention). If no approved treatment exists, then placebo is the control. } \]
What are clinical trials?

- Interventional clinical trials types: Phase IV

 Dose, toxicity are known

 Efficacy in specific disease is known (phase III)

 Approval by the FDA has been granted, subject to acquisition of additional information

 Post approval observation and data collection

 Very low risk, low benefit
What are clinical trials?

Observational clinical trials:

Data collection from medical records

Use of tissue already collected and archived, or tissue that would be otherwise discarded

Questionnaires, surveys

Low risk, no benefit to the study participant

Can help test a preliminary idea

Can lead to new scientific hypothesis
Vocabulary of cancer clinical trials

- **Response rate**: how many participants respond to the intervention out of all the participants

- **Progression free survival**: the period from starting the intervention until the cancer progresses (remission)

- **Overall survival**: duration of survival

- **Toxicity**: number of reported side effects

- **Quality of life**: questionnaires assess function—social, psychological, sexual, reproductive, etc.
Are clinical trials for you?

- **Benefits:**
 - Access to new drugs, otherwise not available
 - Potential benefit: “unknown”
 - Increased monitoring, more frequent visits
 - Advance knowledge, help future patients have access to novel therapies

- **Risks/Cons:**
 - Potential toxicities which are not anticipated
 - Potential lack of benefit: “unknown”
 - Time commitment, additional testing which is not required outside of a clinical trial
Are clinical trials for you?

- **Resources:**
 - Clinicaltrials.gov (NIH sponsored website)
 - American Cancer Society
 - Your oncologist

- **Northwestern University Gynecology Oncology Clinical Trials:**
 - Wendy Swetzig or Jamie Sherr:
 - 312 472 5726
Current Research at Northwestern University in Ovarian Cancer

• **Clinical Trials for Recurrent Ovarian Cancer**

 - GOG-NCI sponsored clinical trials:
 - PARP inhibitors + anti-angiogenesis inhibitors—PI: Dr. Shahabi
 - Epigenetic therapy + immunotherapy—PI: Dr. Matei
 - Anti-angiogenic agent (tivozinib) —PI: Dr. Matei
 - Cancer stem cells targeting agent –PI: Dr. Matei

• **Endometrial cancer**: first line therapy: Carboplatin/paclitaxel+pembroli
dumab

 Wendy Swetzig or Jamie Sherr 312-472-5727
State of clinical trials

NCI CTEP-sponsored Gynecologic Oncology Available Clinical Trials

<table>
<thead>
<tr>
<th>Year</th>
<th>Trials</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>50</td>
</tr>
<tr>
<td>2011</td>
<td>55</td>
</tr>
<tr>
<td>2012</td>
<td>56</td>
</tr>
<tr>
<td>2013</td>
<td>44</td>
</tr>
<tr>
<td>2014</td>
<td>29</td>
</tr>
<tr>
<td>2015</td>
<td>21</td>
</tr>
<tr>
<td>2016</td>
<td>18</td>
</tr>
</tbody>
</table>
State of clinical trials

Women Enrolled in NCI CTEP Gynecologic Cancer Trials

2011 2016
In time the murky skies would clear up and the green growth would wind its way up through the rubble. Now there was new hope for the Wumps.

Bill Peet: “The Wump World”